Hilfe und Dokumentation zu WdK-Explorer

Diagramm für Aktuelle Auwahl statistik

1. Der Oberflächenbau Deutschlands - S. 74

1900 - München [u.a.] : Franz
74 Das niedkrrheinische Schiefergebirgc. bei Manderscheid und die Papenkanle (556 m) bei Gerolstein. Da nun auch die ersten Stadien von Vulkanbildungen, die Maare, in der Vorder- Eifel zahlreich vertreten sind, so bietet dieselbe auf engem Raum die treffendsten Beispiele für deu ganzen Entwickeluugsprozeß und den Aufbau der Vulkane überhaupt. Die Maare der Vorder-Eifel, wie z. B. das bei Daun gelegene Weinfelder Maar, sind kreisrunde, in den devonischen Untergrund des Plateaus tief eingesenkte Seeaugen mit steilen Jnneugehängen, deren oberer Rand mehr oder weniger hoch mit schwarzen Schlacken und vulkanischen Tuffen und Sauden bedeckt ist. Diese vulkanische Umwandlung jedes Maares läßt uns in demselben das erste Stadium der Bildung eines Vulkans erkennen. Wo sich die Eruptionen aus einem derartigen Explosionstrichter, der nunmehr zum Maar geworden, längere Zeit hindurch wiederholt haben, hat sich um die Ausbruchsstelle ein immer höherer Wall von Schlacken, vulkanischen Tuffen und Sanden aufgehäuft und so ein richtiger Kraterrand gebildet. Wurde dieser Kraterrand von der nach- drängenden Lavamasse nicht durchbrochen, so bildete sich nach dem Erlöscheu der eruptiven Thätigkeit des Vulkans in der trichterförmigen Vertiefung ein echter Kratersee, wie dies z. B. an den beiden nördlichen Kratern des Mosenberges zu sinden ist. Wenn nun der Kraterrand von den nagenden Regenwassern wieder zerstört, die Aschensande und Tuffschichten bis auf den devonischen Unter- grund wieder fortgewaschen wurden, so blieb schließlich als letzter Zeuge der einstigen vulkanischen Thätigkeit an dieser Stelle eine nach unten sich trichterförmig verengende dichte Basaltmaffe übrig, die nur der innere Kern eines ehemaligen Vulkans, die Ausfüllung des allererst gebildeten Explosionstrichters oder Maares ist. Solche reine Basaltkegel, die letzten Resultate der mit den Maaren begonnenen vulkanischen Prozesse, sind die in großer Anzahl die Hohe Eifel überragenden Basaltkegel, wie z. B. die Hohe Acht, die ihre größere Erhebung über das Plateau nur dem Umstand verdanken, daß infolge ihrer frühzeitigen Entstehung in der Tertiärzeit die Abtragung des den Basaltkern umhüllenden Schlacken- und Aschenmantels vollständig gelungen ist. Neben den erloschenen Vulkanen verraten noch zahlreiche kohlen- saure Quellen, in der Eifel „Dreis" genannt, sowie Mofetten die ehemaligen energischen Eruptionen des Erdinnern, die in der Vorder-Eifel sowie in der Umgebung des Laacher Sees stattgefunden haben. So zählt man im Kreise Dann allein ea. 500 Sauerbrunnen; im Brohlthal brechen bei Erdarbeiten Kohlensäuredünste allenthalben aus der Tiefe hervor. 3. Nördlich vou der Linie Prüm—birgel—aremberg verschwinden die Spuren ehemaliger vulkanischer Thätigkeit, die Oberflächengestalt und Beschaffenheit des Plateaus nimmt wieder die gleiche Einförmigkeit wie in den Gebieten südlich von der Mosel-Lahnthalfnrche an: wir sind im

2. Der Oberflächenbau Deutschlands - S. 84

1900 - München [u.a.] : Franz
84 Das hessische Bergland. spatbasalten so verdeckt, daß sie nur an ganz vereinzelten Stellen zu Tage treten; dagegen haben mächtige Anhäufungen von losen Schlacken, von grauen trachytischen Aschen und Bimsstein und von dunkelbraunen Basalttuffen einen wesentlichen Anteil an dem Aufbau des Vogelsberges. Diese Schlacken- und Tuffagglomerate treten besonders am Rande des Gebirges, so bei Treis nordöstlich von Gießen, auf, wo auch der Rest eines Neben- kraters, der Aspenkippel, in allerdings ziemlich verwischter Form erhalten geblieben ist. Am Außenrand des Vulkangebietes finden sich auch die schönsten Basaltsäulen des Vogelsberges, so die 4 m hohen sechsseitigen Säulen am Bilstein bei Lauterbach oder die Säulenbildungen von Wilden- stein bei Büdingen. Während also der Außenrand des Vogelsberges durch das Hervor- treten kleinerer Erhebungen, die an manchen Stellen durch die schöne Anordnung der Basaltsäulen und durch steile Felsabstürze die Form vou Burgruinen nachahmen, ein ziemlich abwechslungsreiches Landschaftsbild darbietet, ist der höchste Teil des Gebirges, der zwischen den Orten Herchenhain, Lanzenhain, Ulrichstein und Rudingshain sich ausdehnende „Oberwald", eine einförmige, waldige Hochfläche von 650—700 m Meereshöhe, über welche die höchsten Punkte, wie der Taufstein (772 mj, der Hoherothskopf (767 m), der Sieben Ahorn (753 in), mit ihren breiten Kuppen nur wenig hervorragen. Von diesem hohen Zentralrücken strahlen radial nach allen Seiten die Erosionsthäler, welche auf der Höhe stets mit flachen Waldwiesen beginnen und erst in größerer Tiefe schärfere Thalfurchen iu den Basaltuntergrund einschneiden. Diese radial abfließenden Gewässer des Vogelsberges sammeln sich erst außer- halb der Grenzen des Gebirges zu größeren Flußläufen; auf der Süd- oftfette zur Kinzig, im Südwesten in der Wetterau zur Nidda, im Osten zur Fulda, im Norden zur Schwalm, einem Nebenfluß der Eder, und im Nordwesten zur Ohm und Lahn. Wegen der geringen Bevölkerungsdichte des Vogelsberges — seine Bewohner treiben der vortrefflichen Wiesen wegen vor allem Viehzucht — sind von den Quellthälern dieser größeren Flußgerinne bis jetzt nur drei (Nidder, Nidda und Wetter) durch Eisen- bahnen dem großen Verkehr erschlossen. 2. Die Rhön. Durch den 373 in hohen Landrücken von Schlüchtern, der als Wasserscheide zwischen Kinzig und Fulda stehen geblieben ist, steht der basaltische Vogelsberg mit der Rhön — ebenfalls ein basaltisches Gebirge, aber auf einer triasischen Basis — in Verbindung. Der Hauptunterschied zwischen dem alten Vnlkankegel des Vogelsberges und dem Rhöngebirg beruht jedoch weniger in der verschiedenen Unter- läge als in dem verschiedenen Auftreten der Eruptivmassen beider Gebirge: in dem Vogelsberg bildet der Basalt eine einzige zusammen- hängende Masse, in der Rhön dagegen ragen die jungvulkanischen Gesteine, vor allem Basalte und Phonolithe, in vereinzelten Kuppen und Kegeln aus dem Grundstock von Buntsandstein, dem teilweise noch Muschelkalk aufgelagert ist, empor und bilden, je nachdem diese Erhebungen

3. Der Oberflächenbau Deutschlands - S. 60

1900 - München [u.a.] : Franz
60 Die südwestdeutschen Stufenlandschaften. Alb; nur das mittlere Stockwerk des Lias, das vor allem aus grauen, weichen Mergeln mit einzelnen Kalkbänken zusammengesetzt ist, findet sich an den drei Rändern verhältnismäßig mächtiger vertreten. Mit weichen Mergelkalken, den Fundstätten der merkwürdigen Riesensaurier (Ichthyo- saurus), schließt der Lias nach oben ab; mit mergeligen, grau gefärbten Lagen, den sog. Opalinusmergeln, beginnt die nächst höhere Stufe, der Dogger oder braune Jura. Bald ändert sich aber die Beschaffenheit des Gesteins; an die Stelle der Mergel tritt ein meist gelb gefärbter Sandstein (Eisensandstein), der reichlich Eisenerzbeimengungen und stellenweise abbauwürdige oolithische Roteisenerzslötze enthält. In der oberen Abteilung des Doggers stellen sich über dem Eisensandstein kalkige und mergelige Bänke ein, deren Schlußglied, der Ornatenthon^ sogenannt nach den zahlreich in ihm vorkommenden Ammonitenarten (Cosmoceras ornatum 2c.), darum für das Juragebirge eiue besondere wirtschaftliche Bedeutung hat, weil er unter dem Jurakalk die erste Wasser- dichte Schicht bildet, aus der zahlreiche Quellen zu Tage treten. Die Hauptmasse der fränkischen Alb wird von kalkigen und dolomitischen Gesteinen gebildet, die unter dem Namen Jurakalk zusammen- gefaßt werden. Vier Abstufungen läßt dieser Jurakalk in der fränkischen Alb erkennen. Zunächst über dem Ornatenmergel des Doggers folgen mächtige Schichten eines weißen, in dünnen Bänken sehr wohlgeschichteten Kalkes, des sog. Werkkalkes, der in Hunderten von Steinbrüchen gewonnen wird. Darauf stellen sich grobklotzige Kalke ein, die voll von oft ver- kieselten Versteinerungen (Terebratula, Rhynchonella ?c.) sind und deshalb geradezu als Schwammkalk bezeichnet werden. Die Schwammkalke dienen dem nun folgenden Frankendolomit als Unterlage. Der Frankendolomit ist ein unrein-weißliches, bald gleichartig derbes, bald lückig-poröses, ungleichmäßig verfestigtes Gestein, welches infolge des verschiedenen Härtegrades seiner Teile in oft sehr abenteuerlich gestaltete Felsenformen verwittert. Als jüngstes Glied des weißen Juras stellt sich in der fränkischen wie in der schwäbischen Alb der Plattenkalk ein, der in unregelmäßigen Vertiefungen des Frankendolomites auf der Hochfläche in einzelne Partien verteilt ist. Die Lagerung der Juraschichten in der fränkischen Alb ist wie bei dem schwäbischen Jura — im Gegensatz zu dem stark zusammengefalteten Schweizer Jura — im allgemeinen eine regelmäßige: ausgedehnte, horizontal liegende Schichtenplatten setzen mit gleichförmigem Aufbau der einzelnen Jurastufen den ganzen Gebirgszug vom Rande der Donau- ebene bis zum oberen Main bei Lichtenfels zusammen; nur durch zahl- reiche Verwerfungen wird die regelmäßige Lagerung der niemals gefalteten Schichten gestört. Diese Verwerfungen, die am Westrand des Gebirges die Süd-Nord-, an dem Ostrand die Nordweft-Südostrichtuug einhalten, haben bewirkt, daß die Keuperschichten besonders von Osten her schwach muldenförmig eingesunken sind, so daß in der Oberpfalz die Abgrenzung des Gebirges gegen die Trias sich weniger scharf bemerkbar macht als

4. Der Oberflächenbau Deutschlands - S. 38

1900 - München [u.a.] : Franz
38 Die oberrheinische Tiefebene. Geschiebe wieder getrübten Fluten bespülen darum meist den Fuß steiler Hochufer, die teils aus jenen diluvialen Ablagerungen bestehen, die hier das Thal in großer Mächtigkeit ausgefüllt haben, teils von festen Gesteinsmassen (Gneis, Buntsandstein, Muschelkalk) gebildet werden. Da wo der Strom in seiner ausnagenden Thätigkeit auf festes Gestern oder aus feste Lagen schwerer Geröllmassen gestoßen ist, treten Strom- schnellen und enge, unzugängliche Schlünde, wie z. B. zwischen den Städtchen Groß- und Kleinlaufenburg, auf. Das Läugenprosil zeigt deshalb auch einen vielfachen Wechsel von Abstürzen und schwachen Gefällen. Die Fallhöhe des Laufenburger Strudels z. V. beträgt nahe an 5 in auf 1 km Länge; zwischen den Stromschnellen dagegen bewegt sich das Gefälle meist zwischen 1,2 ^/oo und 0,8 ^/oo, nimmt aber in den Woogen zunächst oberhalb der Felsschwellen bis zu 0,30/00 und noch weniger ab. Der Stromlauf des Rheines von seinem Ausfluß aus dem Bodensee bis zu seinem Eintritt in die oberrheinische Tiefebene ist also im ganzen ein geschlossener; nur vereinzelt und seit lange unverändert ragen über den Mittelwasserspiegel Kiesfelder und sonstige kleine Inseln auf. b) Der Rheiulauf von Basel bis Bingen. In scharfem Gegensatz zu der abwechslungsreichen Gestaltung des Stromgerinnes zwischen Stein und Basel steht das große Mittelstück des Rheines, dem durch die ebenmäßig geformte oberrheinische Tiefebene eine einheitliche Stromgestaltung aufgeprägt ist. Infolge der im ganzen gleichmäßigen Unterlage des Strombettes in der Rheinebene — zumeist diluviale Saude und Gerolle — ist die Längenprofilknrve des Rheins von Basel bis Bingen sehr schön ausgeglichen, d. h. dieselbe stellt im ganzen eine nach unten schwach gekrümmte Kurve dar. Nur im obersten Teil dieser Strecke, zwischen Rheinweiler und Breisach, dann abwärts noch einmal, zwischen Oppenheim und Mainz, zeigt die Längenprofilknrve schwache Krümmung nach oben. Die erste Abweichung von der normalen Gesällskurve rührt davon her, daß hier die Stromsohle, in den alten Geröllkegel des diluvialen Flnßes eingesenkt, durchaus von schweren Geröllen bedeckt ist, welche der Ausbildung des Gerinnes nach der Tiefe größeren Widerstand entgegenstellen. Die zweiterwähnte Zunahme des Gefälles von oben nach unten erklärt sich daraus, daß von Oppenheim an wieder Felsen und feste Thonbänke im Bett des Stromes sich bemerkbar machen. Trotz des im ganzen gleichmäßigen Verlaufs der Läugeuprofilkurve des Rheines innerhalb der oberrheinischen Tiefebene lassen sich an diesem Stromstück drei verschiedene Grundrißformen unterscheiden. In seinem Lauf zwischen den Vogesen und dem Schwarzwald zeigt der Strom in seinem starken Gefälle und in den unruhigen Bewegungen seiner Wasserführung noch vorwiegend die Eigenschaften des geschiebe- führenden Gebirgsstromes. Die Ufergelände sind größtenteils wenig höher als die das Strombett bildenden Wasserläufe und Kiesfelder, die eine Fläche von 1 - 2 km Breite, an einigen Stellennoch breitere Flächen

5. Der Oberflächenbau Deutschlands - S. 99

1900 - München [u.a.] : Franz
Der Thüringer Wald. 99 Norden der Jlmenauer Seitenkamm ab, der im K i ck e l h a h n mit 862 m gipfelt; als Gegenstück hiezn zieht vom Großen Finsterberg nach Süden die Gruppe des Adlerbergs, die in ihrem höchsten Punkt nahezu dieselbe Höhe wie der Kickelhahn, nämlich 849 in, erreicht. Vor allem durch diese Zerteilung des Horstes in scharf ausgeprägte Seitenkämme mit steilen Gehängen gegen die dazwischen liegenden Thäler und mit prallem Abfall gegen die Ränder des Gebirges erhält der Thüringer Wald einen nahezu alpinen Gebirgsban. Der herrliche Mischwald dagegen — in den unteren Lagen Buchen, in den oberen Regionen Fichten und Tannen, unterbrochen von wohlgepslegten Matten und Wiesen — und die dichte, bis in die höchstgelegenen Teile des Gebirges sich fortsetzende Besiedelnng lassen über den Charakter des Thüringer Waldes als eines Mittelgebirges keinen Zweifel entstehen. b) Bewäss erung und Weg netz. (Vergl. die entspr. Figur der Flnßprosil-Tafel.) Die ungemein wechselvolle Scenerie, welche dem Thüringer Wald mit Recht den Ruf des schönsten deutschen Mittelgebirges eingetragen hat, beruht vor allem auf seinem Reichtum an kurzen Querthälern, die von frischen, rasch dahinranschenden Gewässern durchflössen werden. Die Länge dieser tief und steil eingesenkten, von idyllischem Waldeszauber um- slossenen Thalgründe beträgt selten mehr als 12 km; die Folge davon ist, daß die Gewässer, die auf eine so kurze Strecke Fallhöhen von 340—470 m durchmessen, ein für ein Mittelgebirge außerordentlich steiles Gefälle auf- weisen. Das durchschnittliche Gefälle der Ilm und der Schleuse betrügt auf 1 km 27 m, das der Schönau, Gera und Lichtenau 31—36 m, das der Apselstedt sogar mehr als 40 m. Bei mehreren ganz kurzen Bächen, wie dem 6 km langen Effelderbach, dem 5 km langem Grumbach, dem 4x/2 km langen Farrenbach, steigert sich das durchschnittliche Gefälle auf 1 km bis zu 62, 71 und 85 m; auch das längste der Thäler des eigent- lichen Thüringer Waldes, das der Nahe, besitzt noch 28 m durchschnittliches Gefälle auf l km. Alle diese Querthäler sind im großen und ganzen Erosionsthäler, bei deren Anlage nur in vereinzelten Fällen Schichten- störuugen eine Rolle gespielt haben. Anders dagegen verhält es sich mit den beiden Längsthälern, welche den Südwestfuß bezw. den westlichen Teil des Nordostfußes des Gebirges begleiten, den Thälern der oberen Werra und der Hörsel. Die Thalfurchen dieser beiden Flüsse fallen mit tektonischen Linien und zwar mit den großen Dislokationen zusammen, welche während der Tertiärzeit den Horst des Gebirges quer zu den nordöstlich streichenden Falten des alten Hochgebirges abgeschnitten haben. In den eben genannten beiden Dislokationsspalten verlaufen die zwei Hauptverkehrsadern, nämlich 1. Eisenach—meiningen—kobnrg und 2. Eisenach—gotha—saalfeld, die den Thüringer Wald im Norden und im Süden umsäumen, und von welchen aus die eigentlichen Wald- bahnen stets paarweis von Norden und Süden her in das Gebirge ein- dringen. Zwei von diesen meist sehr kurz abschneidenden Seitenbahnen durchqueren das Gebirge vollständig und erlangen dadurch internationale 7*

6. Der Oberflächenbau Deutschlands - S. 72

1900 - München [u.a.] : Franz
72 Das niederrheinische Schiefergebirge. und durch das Hervortreten ostnordostwärts gerichteter Sättel quarzitischer Gesteine innerhalb der Grauwacken und Thonschiefer einige Aehnlichkeit mit den beiden südlichen Teilen des Schiefergebirges, dem Huusrück und dem Taunus, erhalten. a) Ueberschreiten wir die untere Mosel, etwa abwärts Kochem, und wenden uns der Hohen Eifel zu, so finden wir die Hunsrückschieser, welche die steilen Südhänge des Moselthales zusammensetzen, auch auf dem linken Moselufer bis zur Linie Andernach—mayen—manderscheid ausgebreitet; nur fallen die Schiefer der südlichen Eifel nicht wie die des nördlichen Hunsrück nach Südsüdost, sondern nach Nordwesten ein und zwar infolge des Umstandes, daß die ganze Eifel eine Mulde von devonischen Gesteinen vorstellt, deren jüngste Glieder, die lebhaft gefärbten oberdevonischen Mergelschiefer und Nierenkalke, am Südrand der Schneifel von Prüm bis Aremberg in nordöstlicher Richtung den mitteldevonischen Grauwacken aufgelagert sind. Von der Linie Koblenz—mayen an sinkt das bisher auf 600 in mittlerer Höhe sich haltende Devonplateau der Hohen Eifel auf ca. 300 in herab: wir sind am Südrand des tiefen N e u w i e d e r Beckens angelangt, einer wichtigen geognostischen Grenzlinie, die sich orographisch nur darum nicht so bemerkbar macht, weil der devonischen Grundlage des rautenförmigen Vierecks Mayen—kempenich—andernach— Koblenz zahlreiche Trachytkegel und vereinzelte Basaltkuppen aufgesetzt sind, die in ihren höchsten Gipfeln, wie dem Hochsimmer bei Mayen, dem Perlerkopf bei Kempenich, 575 bezw. 585 in erreichen. Diese und andere Berge der weltberühmten Umgebung des Laacher Sees besitzen alle noch die regelmäßige Form der Vulkankegel, deren gerade ab- geschnittene Spitze den trichterförmigen Krater enthält; der Kraterwall besteht stets aus locker aufgehäuften schwarzen Lavaschlacken (Lapilli) und sandigen Aschen, welche, aus dem Krater ausgeschleudert, sich all- mählich um die Eruptionsöffnung anhäuften; nach innen fällt der Kraterrand in schroffen Schlackenfelsen steil ab, nach außen dacht er sich flach mit einer Böschung von 20—25° ab. Die tiefste Stelle des ganzen, das starre Bild einer Mondlandschaft auf Erden wohl einzig nachahmenden Gebietes ist der La ach er See, dessen Spiegel 273 in über dem Meere gelegen und dessen größte Tiefe, obwohl er schon einmal tiefer gelegt wurde, immer noch 55 in beträgt. Diese tiefblaue, in wunderbarer Einsamkeit gelegene Seefläche, für welche die vor hundert Jahren gesprochenen Dichterworte: Stiller wie die ist keine Unter des Himmels Höh! auch jetzt noch volle Gültigkeit haben, ist kein echter Kratersee, sondern das Wasserbecken eines sog. Explosionstrichters, d. h. eines im ersten Stadium seiner Entwickelung stehen gebliebenen Vulkans, aus dessen Tiefe Wasser- dämpfe ausbrachen und vulkanische Aschen und Bimssteine, aber keine feste Lava ausgeschleudert wurden. Die trachytischen Bimssteintuffe und Aschen (Trasse) des einstigen Explosionskraters von Laach bedecken, mit

7. Die Alpen und Süddeutschland - S. 30

1905 - Dresden : Bleyl & Kaemmerer
— 30 — staubartige Schnee allmählich in eine feste, feinkörnige Masfe, die man als Firn bezeichnet (von „fern", d. h. vorjährig, also so viel als vorjähriger, alter Schnee). Die vom Firn bedeckten Flächen und Mulden im Hochgebirge nennt man Firnfelder oder Firnmeere. Der Firn ist blendend weiß und so hart, daß man oft darüber hinwegschreiten kann, ohne einzusinken. Jahr um Jahr bildet sich eine neue Firnschicht. An steilen Abstürzen, wo die Schnee- massen Plötzlich abbrechen, kann man diese Schichten deutlich bemerkeu. In manchen Mulden liegt der Firn in einer Dicke von 500 m übereinander. c. Die Entstehung der Gletscher. Es ist erklärlich, daß die oberen Firnschichten auf die unter ihnen liegenden einen Druck ausüben, der um so größer ist, je höher sie übereinander lagern. Dadurch werden die unteren Schichten immer mehr zusammengepreßt, wodurch sie sich endlich in kristallklares Eis verwandeln. Diese Umwandlung ist nicht schwer zu erklären. „Jede Schneeflocke besteht aus kleinen Eiskristallen. Eine Masse von Schnee ist also nur eine große Menge von kleinen Eiskristallen mit Lust da- zwischen. Wenn also der Schnee zusammengepreßt wird, so muß die Luft eut- weichen, und die bis dahin getrennten Kristalle gefrieren zu einer festen Masse zusammen. Jeder weiß, daß man Schneebälle durch festes Drücken zwischen den Händen sehr hart machen kann. Je dichter der Schnee zusammengepreßt wird, desto härter wird er. Wenn wir also einen harten Schneeball machen, so ver- fahren wir mit dem Schnee ungefähr fo, wie die Natur es tut, wenn sie den Hochgebirgsschnee in Eis umwandelt. Wir pressen die Luft heraus und er- möglichen dadurch den kleinen Eisteilchen, zusammenzufrieren und sich zu einem Stück Eis zu bilden. Doch vermögen wir nicht alle Luft herauszupressen; daher sieht der Ball nach allen unfern Anstrengungen noch weiß aus, wegen der in ihm eingeschlossenen Luft. Auf den Schneefeldern ist der Druck natürlich weit größer: die Lust wird mehr und mehr herausgepreßt, bis zuletzt der Schnee zu klarem, durchsichtigem Eis wird." (Geikie.) Auch in nnsern Straßen können wir in jedem Winter Ähnliches beobachten. Wenn nämlich der Schnee längere Zeit liegen bleibt, so wird er von den Füßen der darüber Gehenden so zusammengetreten, daß er sich bald in eine feste Eis- masfe verwandelt. Die Oberfläche des Bodens, worauf die Schuee- und Firnmassen lagern, ist höchst selten ganz eben, sondern meist nach einer Richtung hin geneigt. Häufig sind die Abhänge sogar stark abschüssig. Das hat zur Folge, daß sich der Firn aus den geneigten Flächen allmählich abwärts schiebt und in den tieferen Mulden zu großen Massen anhäuft, wo dann auch die Umwandlung in Eis vor sich geht. Von hier ans dringt dann das Gletschereis gleich

8. Die Alpen und Süddeutschland - S. 32

1905 - Dresden : Bleyl & Kaemmerer
— 32 — Die Gletscher folgen bei ihren Bewegungen allen Windungen und Krüm- mnngen des Tales. Verengt sich dieses, so schwillt die Masse in die Höhe und drängt sich durch; erweitert es sich, so breitet sie sich in dem größeren Räume aus. Wenn zwei Täler zusammenstoßen, so vereinigen sich deren Gletscher zu einem Strome, der dann das gemeinsame Haupttal füllt. — Die Ursache der Bewegung der Gletscher ist deren Schwere. Es ist eine durchaus falsche Vorstellung, wenn man glaubt, daß der Gletscher als Ganzes über seine Unterlage langsam hinabrutsche. Zwar findet auch eine gleitende Bewegung statt, aber nur in geringem Maße. Die Hauptbewegung ist ein wirkliches Fließen wie beim Wasser, wobei die kleinsten Massenteilchen fortwährend ihre Lage gegeneinander verändern. Das geht schon daraus hervor, daß der Eisstrom sich stets den wechselnden Formen des Tales anschmiegt. Es wird ferner bewiesen durch die Tatsache, daß die mittleren Teile des Gletschers sich viel rascher bewegen als die Seitenteile, die durch die Talränder gehemmt werden, ganz so wie das auch bei Flüssen der Fall ist. Wie groß mitunter diese Unterschiede sind, zeigt ein Versuch am Rhonegletscher. Man hatte mehrere Steinreihen quer über den Gletscher gelegt. Nach 6 Jahren betrug die Fortbewegung in der Mitte 623 m, am Rande dagegen nur 55 m. Das Eis ist also keineswegs so spröde und starr, wie es auf den ersten Blick er- scheint. Es besitzt vielmehr eine gewisse Bildsamkeit, die allerdings beim Gletschereise bedeutend größer ist als beim gewöhnlichen Eise. Das Gletschereis besteht nämlich nicht wie dieses aus einer einzigen kristallisierten Masse. Es ist vielmehr von einem dichten Netze von Haarspalten durchzogen, durch die es in zahllose kleine, eckige Stückchen zerlegt wird, die sog. Gletscherkörner, die sich aber so sest aneinanderschließen, daß ihre Grenzen kaum wahrnehmbar sind. Es ist klar, daß durch diese körnige Beschaffenheit die Verschiebung der einzelnen Teilchen gegeneinander bedeutend erleichtert wird. Dazu kommt dann noch ein zweites. Bekanntlich bildet sich Eis, sobald die Temperatur auf 0° sinkt. Wird jedoch Wasser einem hohen Drucke ausgesetzt, so liegt der Gefrierpunkt mehr oder weniger unter 0°, je nach der Stärke des Druckes; Eis kann darnm durch entsprechende Belastung wieder in Wasser zurückverwandelt werden. Nun bedenke man, welch gewaltiger Pressung die Teile des Gletschereises ausgesetzt sind, einmal durch den Druck talabwärts, zum andern infolge des ungeheuren Gewichtes der übereinander lagernden Massen. Es ist darum erklärlich, daß an Stellen hohen Druckes sich Eisteile in Wasser auflösen und durch die feinen Haarspalten nach Stellen geringeren Druckes abfließen, wo sie wieder gefrieren. Auf diese Weise bekommt der Gletscher gleichsam Millionen von Gelenken, und nur so wird es begreiflich, daß die Schwere auf ihn eine ähnliche Wirkung ausüben kann wie auf flüssiges Wasser. „Nach Helms Auffassung gehört das Gletschereis in die Kategorie der dick- flüssigen Körper, die auf Druck plastisch ausweichen und auf Zug zerreißen. Den Druck übt hier die eigene Masse aus, den Zug die talabwärts gerichtete Komponente der Schwerkraft. Die Art der Plastizität bedarf aber doch noch einer Erläuterung. Aller- dings ist das Eis, wenn seine Eigentemperatur in der Nähe des Schmelzpunktes liegt, plastisch und kann sich ohne Bruch umformen, aber diese Eigenschaft reicht zur Erklärung nicht aus. Eine Bewegung wie die des Gletschers ist mit Zerreißungen und Ver- schiebnngen verbunden, und der Eiskörper müßte sich endlich in ein Haufenwerk auflösen, wenn nicht eine zweite Eigenschaft zu Hilfe käme, die der Regelation. Sie besteht darin, daß tauende Eisstückchen in ihren Berührnngsstellen sofort wieder zusammenwachsen. Sie ist es, die alle Wunden heilt, die die kleinen Brüche wie die großen Spalten ver- schwinden läßt, die zwei Gletscher zu einem einzigen Strome verbindet." (Supau.)

9. Die Alpen und Süddeutschland - S. 36

1905 - Dresden : Bleyl & Kaemmerer
— 36 — fernt man die Grundmoräne, so bemerkt man ferner, daß nnch der Felsgrund glatt poliert und geritzt ist. Von derselben Beschaffenheit sind die Seitenwände des Tales, soweit sie das Gletschereis bedeckt. Wie sind diese eigentümlichen Erscheinungen zu erklären? Es ist bereits erwähnt worden, daß der Gletscher nicht bloß fließt, sondern anch eine allerdings geringe gleitende Bewegung hat. Bei dem ungeheuren Gewichte nun, das er besitzt, ist es leicht erklärlich, daß er bei feiner Fortbewegung alle noch so kleinen Ecken und Spitzen seiner Unterlage abschleifen und so sein Bett allmählich ver- tiefen umß. Verstärkt wird diese Arbeit noch durch die zahlreichen Gesteins- trümmer, die vou den Seitenwänden her und durch Gletscherspalten aus deu Grund geraten. Hier werden sie durch die sich langsam fortbewegenden Eis- Massen mit fortgeschoben, wobei sie dann mit ihren scharfen Kanten und Spitzeu deu Felsboden kratzen und ritzeu. Dabei werden sie fortwährend auch selbst ab- genutzt, geglättet und gestreift wie das unter ihnen liegende Gestein oder anch ganz zerrieben. So entsteht eine sandige, schlammige, mit Steinen durchsetzte Masse, die Grundmoräne. Ihre feineren Teile werden unaufhörlich vom Wasser mit fortgespült, daher denn auch der Bach, der dem untern Ende des Gletschers entströmt, eine trübe Färbung hat. Was der Gletscher an Gesteinstrümmern am Grunde sortschiebt oder auf feinem Rücken mit sich fortträgt, häuft sich an seinem untern Ende an und bildet hier die Eud- oder Stirnmoräue. Sie erscheiut hier als schmaler, niedriger, dort als breiter, mächtiger, bergartiger Steinwall. Anderwärts tritt sie uns alz eine weite Schlamm- und Kiessläche entgegen, in der mächtige Fels- trümmer zwischen unregelmäßigen Schutthügeln zerstreut liegen. In der Mitte ist stets eiue Lücke, durch die der Gletscherbach absließt. Schwankungen in der Größe der Gletscher. Die Größe der Gletscher ist periodischen Veränderungen unterworfen. Auf Zeiten scheinbaren Stillstandes folgen solche merklichen Rückganges, bis wieder nach einem Stillstande ein erneutes Wachstum beginnt. Im 17. und 18. Jahrhundert scheint in den Alpen eine allgemeine Zunahme der Vereisung stattgefunden zu haben. Seit etwa 1850 dagegen ist fast überall, und zwar nicht nur in den Alpen, sondern auch iu den Pyrenäen, in Norwegen und im Kaukasus eiu Zurück- weichen der Gletscher beobachtet worden. Der Rhonegletscher z. B. hat Wo m an Länge verloren, der viel mächtigere Pasterzengletscher allerdings nur etwa 100 m, aber seinen Raumverlust hat man auf 218 Mill. cbm geschätzt. Nach Richters Berechnung beträgt die Gesamtverkleinerung der Ostalpengletscher beim letzten Rückgange über 9 Kubik- kilometer. Wie es scheint, geht die Periode des Rückganges aber jetzt ihrem Ende entgegen. Zwar hat in den letzten Jahren bei den meisten Alpengletschern noch eine Abnahme statt- gefunden. So ist z. B. der Rhonegletscher 1303 noch um 111 /.2 m zurückgewichen. Andere dagegen habeu wieder zugenommen. Während dies 1.901 nur erst in einem Falle beobachtet wurde, konnte man im Jahre 1903 schon ein Wachstum bei 15 Gletschern feststellen. Die Ursachen solcher Ab- und Zunahme der Gletscher liegen ohne Zweifel in klimatischen Verhältnissen, sind aber noch nicht genügend erforscht. Ein Rückgang kann

10. Die Alpen und Süddeutschland - S. 65

1905 - Dresden : Bleyl & Kaemmerer
— 65 — dieser Stelle besonders kräftig über den Boden schleifen und stark erodieren. Mit dieser Anschauung scheint der Umstand in Übereinstimmung zu stehen, daß sich an den Teilen der Alpen, wo die Gletscher mit dem größten Gefälle an den Rand hinabgelangt sein mußten, auch die tiefsten Seen vorfinden, die lombardischen Seen, deren Tiefe 300—400 m betragen mag. Am Ausgange der großen Täler der Schweiz erreichen die Seen eine Tiefe von 200—330 m und am Ausgange der bayrischen und österreichischen Täler nur eine von 100—200 in. Die mitgeteilten Tiefen mögen bei flüchtiger Betrachtung sehr groß erscheinen; im Verhältnis zur Länge der betreffenden Seen aber haben diese Zahlen wenig zu bedeuten, denn es beträgt z. B. beim Comer See die Tiefe nur den 130. Teil, beim Starnberger See nur den 180. Teil, beim Genfer See nur den 230. Teil der Länge, und so sind diese alpinen Randseen im Grunde genommen doch recht flache Mulden." Eine entgegengesetzte Ansicht vertritt der Schweizer Geologe Heim. Wie andere, so bestreitet auch er ganz entschieden, daß den Gletschern eine so gewaltige erodierende Kraft zukomme, daß dadurch große Seebecken ausgehöhlt werden konnten. Auf Grund vieler Beobachtungen und Untersuchungen, auf die wir aber hier nicht eingehen können, nimmt er au, daß das Alpengebirge, nachdem sein Ausbau vollendet war und auch die Täler sich bereits gebildet hatten, nach der ersten Eiszeit als Ganzes wieder gesunken sei, während das Vorland stehen blieb. Infolge dieser Senkung kamen die untern Täler des Gebirges tiefer zu liegen als die vorgelagerten Ebenen, sie verloren ihren Abfluß und füllten sich mit Wasser. Mauche dieser Beckeu sind durch Flußablagernugeu wieder aus- gefüllt worden, während andere sich in ihren untern Teilen erhalten haben. Diese Erhaltung ist mit auf die Gletscher zurückzuführen, die bei ihrem erneuten Vorrücken zur zweiteu und dritten Eiszeit die Seebecken nach und uach ganz ausfüllten und fo vor der Zuschüttung bewahrten. 17. Die Niederschläge. Der Wasserreichtum der Alpen hat seinen Grund in der Menge der Nieder- schlage, die dort stattfinden. Es fällt in ihnen viel mehr Regen und Schnee als z. B. in Mitteldeutschland. Wir wollen jetzt die Ursachen dafür kennen lernen. Das führt uns zunächst auf die Frage, wie Regen und Schnee entstehen. Doch beschränken wir uns bei dieser Erörterung auf das Allerwichtigste, da die eingehende Behandlung des Gegenstandes in die Naturlehre gehört. a. Die Verdunstung. Regen und Schnee sind Wasser, jener in flüssiger, dieser in fester Form. Sie kommen beide aus den Wolken. Wie gelangt nun das Wasser in die Wolken? Um auf diese Frage eine richtige Antwort geben zu können, wollen wir zunächst untersuchen, was aus dem Wasser wird, das als Regen oder Schnee zur Erde niederfällt. Wenn es regnet, fo können wir überall beobachten, wie das Wasser sich in den Vertiefungen des Erdbodens zu Lachen und Pfützen ansammelt. Ist der Regen stark, so laufen kleine Ströme schmutzigen Wassers die Straßen und Fick. I. Band. 5
   bis 10 von 84 weiter»  »»
84 Seiten  
CSV-Datei Exportieren: von 84 Ergebnissen - Start bei:
Normalisierte Texte aller aktuellen Treffer
Auswahl:
Filter:

TM Hauptwörter (50)50

# Name Treffer  
0 0
1 0
2 0
3 0
4 1
5 0
6 0
7 52
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 41
19 44
20 0
21 6
22 0
23 0
24 7
25 0
26 0
27 0
28 0
29 3
30 1
31 0
32 0
33 0
34 0
35 0
36 0
37 0
38 14
39 1
40 0
41 0
42 0
43 0
44 3
45 7
46 0
47 0
48 0
49 12

TM Hauptwörter (100)100

# Name Treffer  
0 31
1 3
2 5
3 76
4 30
5 94
6 112
7 0
8 0
9 0
10 10
11 24
12 84
13 7
14 2
15 0
16 22
17 4
18 25
19 0
20 0
21 108
22 2
23 2
24 12
25 3
26 0
27 14
28 25
29 1
30 5
31 0
32 1
33 14
34 0
35 1
36 4
37 0
38 1
39 0
40 14
41 0
42 15
43 13
44 4
45 32
46 2
47 10
48 48
49 132
50 42
51 1
52 0
53 0
54 4
55 1
56 0
57 15
58 1
59 0
60 0
61 17
62 19
63 0
64 9
65 2
66 9
67 0
68 0
69 2
70 384
71 2
72 3
73 10
74 0
75 1
76 14
77 13
78 0
79 4
80 8
81 4
82 3
83 0
84 6
85 0
86 0
87 2
88 0
89 2
90 0
91 22
92 66
93 71
94 1
95 1
96 0
97 4
98 0
99 19

TM Hauptwörter (200)200

# Name Treffer  
0 23
1 19
2 11
3 38
4 1
5 11
6 46
7 7
8 1
9 3
10 101
11 9
12 89
13 21
14 12
15 1
16 8
17 47
18 23
19 45
20 0
21 7
22 5
23 1
24 136
25 24
26 5
27 0
28 19
29 16
30 8
31 3
32 6
33 93
34 39
35 17
36 9
37 0
38 3
39 22
40 3
41 11
42 6
43 58
44 4
45 7
46 29
47 52
48 11
49 3
50 39
51 75
52 42
53 5
54 58
55 22
56 4
57 2
58 3
59 81
60 11
61 19
62 8
63 1
64 26
65 22
66 2
67 7
68 3
69 1
70 16
71 10
72 54
73 1
74 12
75 23
76 2
77 37
78 10
79 7
80 27
81 178
82 12
83 29
84 6
85 5
86 1
87 0
88 5
89 44
90 18
91 25
92 2
93 6
94 5
95 84
96 5
97 19
98 0
99 11
100 86
101 1
102 60
103 2
104 0
105 11
106 14
107 12
108 1
109 4
110 22
111 104
112 13
113 1
114 14
115 7
116 49
117 2
118 89
119 28
120 7
121 56
122 8
123 25
124 69
125 18
126 6
127 28
128 4
129 16
130 5
131 86
132 96
133 13
134 0
135 1
136 99
137 5
138 1
139 23
140 27
141 20
142 21
143 24
144 3
145 40
146 3
147 2
148 49
149 0
150 2
151 26
152 33
153 2
154 20
155 16
156 28
157 8
158 26
159 1
160 8
161 3
162 1
163 0
164 24
165 14
166 39
167 1
168 24
169 9
170 1
171 184
172 23
173 21
174 2
175 53
176 5
177 19
178 1
179 21
180 29
181 2
182 30
183 182
184 1
185 1
186 1
187 6
188 13
189 0
190 4
191 17
192 23
193 8
194 12
195 3
196 52
197 3
198 1
199 30